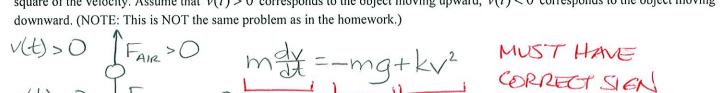


$$(y+1)^{2}(y-3)=0 \rightarrow y=-1,3$$
 $(y+1)^{2}(y-3)=0 \rightarrow y=-1,3$
 $(y+1)^{2}(y-3)=0 \rightarrow y=-1,3$

[a]

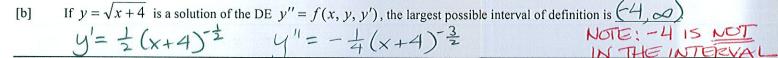

[c]

[b] If
$$y = f(x)$$
 is a solution of the DE such that $f(-4) = 1$, what is $\lim_{x \to \infty} f(x)$? HINT: Sketch a possible graph of $y = f(x)$.

If
$$y = g(x)$$
 is a solution of the DE such that $g(5) = -2$, what is $\lim_{x \to \infty} g(x)$?

SCORE: /7 PTS

Write a differential equation for the velocity v(t) of a falling object if the air resistance is proportional to the SCORE: square of the velocity. Assume that v(t) > 0 corresponds to the object moving upward, v(t) < 0 corresponds to the object moving



[a] The order of the DE
$$y^{10} - y^7 y^{(4)} = (x^6 + y''')^5$$
 is 4 .

[b] If $y = \sqrt{x+4}$ is a solution of the DE $y'' = f(x, y, y')$, the largest possible interval of definition is 4 .

SCORE:

FILL IN THE BLANKS.

Consider the IVP
$$y' = 10x - 5y$$
, $y(1) = -4$.

Use Euler's method with $h = 0.2$ to estimate $y(1.4)$.

$$y(1,2) \approx y(1) + y'(1)(0.2) = -4 + (10(1) - 5(-4))(0.2)$$

$$\frac{1}{2} + \frac{1}{2} + \frac{$$

What does the Existence & Uniqueness Theorem tell you about the IVP $(\cos x)y' - y^{\frac{1}{2}} = 0$, $y(\frac{\pi}{4}) = 0$? SCORE: Justify your answer properly, but briefly.

$$y' = \frac{y^{\frac{1}{2}}}{\cos x} = f, \text{ so } f_y = \frac{\frac{3}{2}y^{\frac{1}{2}}}{\cos x}, \text{ which is not DefineD/continuous}$$

$$AROUND (\frac{\pi}{4}, 0) \text{ where } y < 0$$

$$50, E + U \text{ Tells us nothing.}$$

SO, E+U TELLS US NOTHING, 1

Consider the DE
$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^3$$
.

[a] Is
$$y = x^3 + Ax^2 + Bx$$
 a family of solutions of the DE?

$$y' = 3x^{2} + 2Ax + B$$

 $y'' = bx + 2A$
 $x^{2}y'' - 2xy' + 2y = x^{2}(bx + 2A) - 2x(3x^{2} + 2Ax + B)_{1} + 2(x^{3} + Ax^{2} + Bx)_{1}$
 $= 2x^{3}$

If the answer to [a] is "YES", solve the IVP consisting of the DE and the initial conditions
$$y(1) = 3$$
, $y'(1) = -1$. If the answer to [a] is "NO" skin this part

[b] If the answer to [a] is "NO", skip this part.